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We report the multi-scale geometric analysis of Lagrangian structures in forced
isotropic turbulence and also with a frozen turbulent field. A particle backward-
tracking method, which is stable and topology preserving, was applied to obtain the
Lagrangian scalar field ¢ governed by the pure advection equation in the Eulerian
form 0,¢ 4+ u - V¢ =0. The temporal evolution of Lagrangian structures was first
obtained by extracting iso-surfaces of ¢ with resolution 1024° at different times,
from r=0 to t=T,, where T, is the eddy turnover time. The surface area growth
rate of the Lagrangian structure was quantified and the formation of stretched and
rolled-up structures was observed in straining regions and stretched vortex tubes,
respectively. The multi-scale geometric analysis of Bermejo-Moreno & Pullin (J. Fluid
Mech., vol. 603, 2008, p. 101) has been applied to the evolution of ¢ to extract
structures at different length scales and to characterize their non-local geometry in a
space of reduced geometrical parameters. In this multi-scale sense, we observe, for the
evolving turbulent velocity field, an evolutionary breakdown of initially large-scale
Lagrangian structures that first distort and then either themselves are broken down or
stretched laterally into sheets. Moreover, after a finite time, this progression appears
to be insensible to the form of the initially smooth Lagrangian field. In comparison
with the statistical geometry of instantaneous passive scalar and enstrophy fields in
turbulence obtained by Bermejo-Moreno & Pullin (2008) and Bermejo-Moreno et al.
(J. Fluid Mech., vol. 620, 2009, p. 121), Lagrangian structures tend to exhibit more
prevalent sheet-like shapes at intermediate and small scales. For the frozen flow, the
Lagrangian field appears to be attracted onto a stream-surface field and it develops
less complex multi-scale geometry than found for the turbulent velocity field. In the
latter case, there appears to be a tendency for the Lagrangian field to move towards a
vortex-surface field of the evolving turbulent flow but this is mitigated by cumulative
viscous effects.

1. Introduction

In the paradigm of the energy cascade, three-dimensional turbulence is often viewed
as composed of different scales with energy transferred from large scales to small
scales in a self-similar process. A hierarchy of vortex sizes appears to be involved in
this multi-stage process. In recent work, the multi-scale geometrical decomposition
of instantaneous passive scalar (Bermejo-Moreno & Pullin 2008), enstrophy and
dissipation fields (Bermejo-Moreno, Pullin & Horiuti 2009) showed a geometrical
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progression from blobs through tubes to sheet-like structures with decreasing physical
length scales. Because the Eulerian fields analysed are obtained at a particular time
instant, their geometrical decomposition does not unfold or clarify the geometry
of the dynamical eddy evolution or breakdown process itself. This is an important
question that is pertinent to cascade ideas put forward by Richardson that have been
cast in similarity and statistical form by Kolmogorov and others. Furthermore, the
knowledge of geometry of turbulent structures can inform a vorticity-based, small-
scale description of turbulence (Lundgren 1982; Pullin & Saffman 1993) from which
subgrid-scale models suitable for large-eddy simulation (LES) can be constructed (e.g.
Misra & Pullin 1997; Chung & Pullin 2009). To investigate the temporal evolution
of turbulent structures, Lagrangian methods can be useful. In particular, for inviscid
flow, vortex surfaces can be considered as Lagrangian structures (material surfaces).
Relevant problems are the mechanism of transition from laminar flow to turbulent
flow (e.g. Brachet et al. 1983) or the possible finite-time singularity in Euler dynamics
(e.g. Boratav & Pelz 1994; Hou & Li 2006). An improved knowledge of Lagrangian
structures can also help elucidate various applications in fluid dynamics, for example,
scalar mixing (Warhaft 2000), premixed combustion (Pope 1987) and aquatic animal
locomotion (Peng & Dabiri 2008).

The main purpose of this work is to describe the non-local, multi-scale geometry
of Lagrangian structures in the cascade process in turbulence. In Fourier space, the
velocity field can be projected onto Fourier basis functions that represent, in some
statistical sense, the hierarchy of eddy sizes. Although it is natural to present the
energy spectrum in Fourier space, it is often difficult to attribute physical meaning to
the amplitudes of the basis-function coefficients in terms, for example, of structural
elements such as vortical structures with different geometry like tubes and sheets. An
attractive physically intuitive idea of energy cascade might be cast in terms of vortex
dynamics where vortex stretching is a crucial agent. But the participating eddies may
not be the often portrayed cartoon, blob-like structures of different sizes. While sheet
and tubes are attractive alternative geometries, there exist few relevant quantitative
models with predictive or even postdictive capability. When the Reynolds number is
infinite, vortex lines and surfaces can be considered as material lines and surfaces
that are progressively stretched by chaotic motion in the inertial range to form highly
convoluted shapes. This mechanism can occur at all scales, but the most efficient
transfer of energy is caused by the interaction of vortices with similar sizes. There
is, however, no explicit length scale in the vorticity equation in physical space. This
suggests that a multi-scale method based on transforms with basis functions that are
localized both in Fourier space and physical space is required (e.g. Meneveau 1991;
Farge 1992).

The Lagrangian method for the study of turbulence, originated by Taylor (1922), is
a classical but challenging approach, which involves tracking the trajectories of fluid
particles. Recent progress has seen the combination of modern supercomputation
and advanced experimental facilities, thus offering real promise for advancing our
understanding of Lagrangian turbulence (see Toschi & Bodenschatz 2009). To date,
most studies of Lagrangian turbulence have focused on the statistics of single
particles (see Yeung 2002), particle pairs (see Sawford 2001) and particle triangles or
tetrahedrons (e.g. Pumir, Shraiman & Chertkov 2000). Earlier, Batchelor (1952b)
showed that the area of material surface elements increases exponentially as a
consequence of conservation of mass of the fluid. The Lagrangian-history, direct
interaction approximation developed by Kraichnan (1965) can provide quantitative
predictions of single particle or particle-pair statistics in isotropic turbulence. Signature
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stretching and folding effects on Lagrangian structures in low-Reynolds-number flows
were demonstrated in the chaotic advection theory of Aref (1984). Several stochastic
models for local statistical and geometric structure in three-dimensional isotropic
turbulence based on the properties of the velocity gradient tensor have been developed
to show the material deformation history of fluid elements (e.g. Girimaji & Pope
1990; Chertkov, Pumir & Shraiman 1999; Li & Meneveau 2007). To date, however,
no general theory for Lagrangian turbulence exists, especially one that clarifies the
non-local geometry (in the surface sense) of finite-sized Lagrangian structures in
turbulence.

At the level of diagnostics of large numerical databases obtained from both
experiment and direct numerical simulation (DNS), several non-local methodologies
have recently been developed for the purpose of identifying structures in turbulence.
A scheme for defining ‘Lagrangian coherent structures’ in three-dimensional flows was
constructed by Haller (2001) using direct Lyapunov exponents along fluid trajectories.
An extended structural and fractal description of turbulence has been proposed by
Moisy & Jiménez (2004) utilizing a box-counting method applied to sets of points
of intense vorticity and strain-rate magnitude. Extended dissipation elements were
defined by Wang & Peters (2006) as the ensemble of grid cells from which the same
pair of extremal points of the scalar field can be reached. While recent progress in
particle-tracking techniques in turbulent experiments has demonstrated a promising
capability for investigation of two-particle dispersion and Lagrangian tetrahedrons in
three-dimensional turbulence (e.g. Bourgoin et al. 2006; Xu, Ouellette & Bodenschatz
2008; Salazar & Collins 2009), in order to follow coherent Lagrangian structures,
tens and hundreds of thousands or even millions of particles need to be tracked
simultaneously and instantaneously under some specified topological order. This task
seems formidable for current experimental facilities. Finally, for numerical simulation,
tracking finite-sized Lagrangian structure requires huge computational resources. In
evolution, the geometry of Lagrangian structures typically becomes highly convoluted
with some portions almost singular and hard to resolve (Pope, Yueng & Girimaji
1989; Goto & Kida 2007; Leonard 2009). Constraints on structure evolution are that
the topology should be invariant and the volume conserved. Hence, a stable and
topology-preserving method is required to track Lagrangian structures.

A topic closely related to the Lagrangian description is scalar advection—diffusion
at very high Schmidt numbers in turbulence where mixing of passive tracers
occurs with an extremely small molecular diffusivity. Recent work has confirmed
the existence of intermittently distributed sheet-like structures for scalar gradients
(Ruetsch & Maxey 1992; Brethouwer, Hunt & Nieuwstadt 2003) or scalar variance
dissipation (Schumacher, Sreenivasan & Yeung 2005). Some iso-contour plots can
mimic geometry properties in Lagrangian turbulence but not in a rigorous sense,
because there is no smallest scale in Lagrangian scalar dispersion without diffusion
and the topology of iso-surfaces of the Lagrangian scalar must be invariant in
evolution.

In this study, we address the multi-scale geometric analysis of Lagrangian structures
in isotropic turbulence through DNS. In § 2, a systematic framework is introduced to
describe Lagrangian structures by the Lagrangian scalar field in turbulence. In § 3, we
will describe a backward particle-based method for tracking Lagrangian structures.
In §4, on the basis of numerical results and theoretical estimations, we then consider
the area growth rate of Lagrangian surfaces and discuss the formation of stretched
and rolled-up structures with local flow patterns. Section 5 describes our application
of the multi-scale geometric analysis developed by Bermejo-Moreno & Pullin (2008)
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to investigate the non-local geometry of Lagrangian structures in time evolution at
different length scales. Some conclusions are drawn in §6.

2. Description of Lagrangian structures in turbulence
2.1. Lagrangian dynamic equations for incompressible flow

Because the Lagrangian description is related directly to motion of individual fluid
particles, it can provide a different perspective to the Eulerian description for the
study of turbulent transport or the deformation of material surfaces and lines in
a turbulent flow (see Monin & Yaglom 1975). In this section, we will present a
brief literature survey on the description of Lagrangian structures in turbulence and
establish a formal theoretical framework in this study.
The trajectory of a fluid particle can be calculated by solving the kinematic equation

0X

5 v, (2.1)
where X = X(Xo, to|t) is the location at time ¢ of the fluid particle that was located
at X, at the initial time to with X=(X1, Xs, X3) and X0=(X01, Xo2, X03), and
V =V (X, tolt) is the velocity at time ¢ of the fluid particle with V =(Vy, V,, V3).
We use an upper case letter to denote a Lagrangian variable and a lower case letter
for an Eulerian variable. The Lagrangian dynamic equation of incompressible flow is
(see Monin & Yaglom 1975)

ov

1 0X;
o =[Xj’Xk’p]+V{{X2’ X3, {Xz,Xz,”
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where p is the constant fluid density, p is the pressure, v is the kinematic viscosity,
and the abbreviated notation for the Jacobians is
0(A, B, C)

A B, Cl=——F——7"—"—. 2.3

[ : 0(Xo1, Xo2, X03) (23)
The numerical solution of either (2.1) and (2.2) or the equations of the equivalent
continuum-mechanics formulation (e.g. Marsden & Hughes 1994) is formidable owing
to the cubic and fifth-order nonlinearity for the pressure term and the viscous term
respectively in the right-hand side of (2.2). Alternatively, the Lagrangian velocity for
a fluid particle can be expressed as its local Eulerian velocity

V(Xo, tolt) = u(X(Xo, to7), 1), (2.4)

which can be solved for individual particles using a prior solution of the Navier—
Stokes equation in Eulerian coordinates.

2.2. Lagrangian infinitesimal line and surface elements

The evolution of Lagrangian infinitesimal line elements I = X! — X¥ between a pair
of fluid particles and (vector) surface elements A =1" x I'¥ in turbulence was first
analysed by Batchelor (1952b). Because the volume of closed Lagrangian surfaces
is conserved and any material line is stretched because of the convective nature of
turbulence, the surface area A(r) of Lagrangian structures will increase with time in
evolution. Batchelor (1952b) proposed the exponential growth of the surface area A
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for infinitesimal material elements
A(t) ~ Agexp(§1), (2.5)

where & is the growth rate and Ay = A(r =0), which was then verified numerically by
Girimaji & Pope (1990).

By tracking the Cauchy—Green tensor of deformation in isotropic turbulence,
Girimaji & Pope (1990) found that an initially spherical infinitesimal volume of
fluid deforms into an ellipsoid with tube-like or sheet-like shapes in a finite time.
Similar results were obtained by Pumir et al. (2000) using Lagrangian tetrahedrons.
The evolution of infinitesimal elements and the Lagrangian models based on local
velocity gradient tensors can provide valuable insight into the geometry of small-scale
Lagrangian structures. These approaches cannot however, elucidate the geometry of
finite-sized Lagrangian structures that could exhibit multiple scales with differing
local geometries in evolution.

2.3. Lagrangian scalar field and finite-sized Lagrangian structures

Because two fluid particles, however close initially, tend to separate in turbulent flow
(see Sawford 2001), a finite-sized Lagrangian structure cannot be described by the
product of infinitesimal line elements for long times. Its motion can be expressed as
an ensemble of particles comprising a material surface where each particle is marked
by a constant scalar value in evolution in the interval # to ¢

H(X(Xo, 101), 1) = $(Xo, 10). (2.6)
A scalar field can be associated with these particles
Bl = [ e DB (Kol 14X, 1)
R
by the Lagrangian position function
Y(x,t) =8(x — X(Xo, fo|t)). (2.8)
From (2.6) and (2.7), the initial scalar field at r =1, can be written as
$lx.10) = [ 9w 0)p(Xo. ) dXo 29)
IR.
where
Y(x, 1) = 6(x — Xo). (2.10)

The Lagrangian position function ¥ (x,t) is determined by the particle trajectory
X (xo, to|t), solving (2.1) either forward or backward in time. Thus, from (2.7)—(2.10)
an instantaneous scalar field can be mapped to the initial scalar field as

P(x, 1) > ¢ = ¢p(x, 1), (2.11)

by an ensemble of marked particles at #, and ¢ and their trajectories or Lagrangian
characteristics represented by Lagrangian position functions ¥ (x, t).

In fact the motion of marked particles can be related to a kind of scalar diffusion
(Batchelor 1952a). Differentiating (2.8) with respect to time yields the equation of
motion for

oYy  0X;
o ot

8i(x — X), (2.12)
where
51(x — X) = 5/()(1 — Xl)(S(XQ — Xz)(S(X3 — X3),
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with
, 0
8(x1 — X1) = 675()61 - Xy).
X1
Substituting (2.1) and (2.4) into (2.12), we obtain

Dy _ 0
Dt or W ox;
Next, integrating (2.13) with an ensemble of marked particles ¢(Xo, #p) at any initial

time f, as

—0. (2.13)

| Broamdxo= g [ v mXomdxo=0 (1
R3

together with the mapping (2.11) of ¢(x, r) between two time instants shows that the
marked particle problem is a special case of the passive scalar dispersion without
molecular diffusion

)
67¢ +u-Vop =0. (2.15)
In this paper, we will use the term ‘Lagrangian scalar’ to denote the non-diffusive
passive scalar whose evolution is described by (2.15). The function ¢(x,r) will
be described as a Lagrangian scalar field. The multi-scale geometric analysis of
Lagrangian structures will later be obtained from the statistical geometry of iso-
surfaces of ¢(x, ) at different scales.

2.4. Spectrum of the Lagrangian scalar field

Under the straining motion of a velocity field u(x, ¢), Lagrangian material surfaces
that are iso-surfaces of ¢(x, tr) governed by (2.15) are stretched and folded, which will
generally amplify the local scalar gradient and thereby cause the characteristic length
scale of the scalar field to continually decrease. To investigate this cascade process
of the Lagrangian scalar field in a periodic domain, we first consider the Fourier
expansions

u(x, 1) => alk, 1)e", (2.16)
k
p(x. 1) =Y plk.1)e™ (2.17)
k
Substituting into (2.15) then gives
%&(k, 1) + ik, k;ﬂ fin(p, (g, 1) =0, (2.18)

which expresses the interaction of wavenumber triads k, p, and ¢. The equation of
the scalar spectrum density

(k. 1) = (d(k. 1)p(—k. 1)) (219
can then be obtained from (2.18) by multiplying ¢(—k, 1) and averaging
0 . N A A _
5 Pk 1) + ik kijﬂwm(p, 1b(g. )d(—k. 1)) = 0. (220)

In general, the Lagrangian scalar cascade transports @(k, t) to higher and higher
wavenumbers by the nonlinear interaction of wavenumber triads k = p + ¢ without
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dissipation. In high-Reynolds-number turbulence, as t — oo, highly random velocity
Fourier modes in the inertial range appear to redistribute scalar Fourier modes into
all the wavenumbers with similar @(k, 7). In isotropic turbulence, the scalar spectrum
is

E4(k,t) = 4nk’®(k, 1), (2.21)
where k = |k|. Hence, the Lagrangian scalar spectrum in isotropic turbulence at high

Reynolds numbers may be expected to approach the asymptotic scaling law, at least
within some high wavenumber ranges

Epk. 1) ~ O(K), t— oo, (2.22)

which implies that the Lagrangian scalar field with a smooth initial condition may
become discontinuous or else develop exponentially small structures as t — 0. In
other words, the Lagrangian scalar field with finite spatial resolution over long times
appears to become a spatial delta-correlated field (¢(x)p(x + r)) =8(r).

From (2.18), however, the Lagrangian scalar field is still able to develop
exponentially small-scale structures even in a steady, low-Reynolds-number flow,
which is referred as ‘chaotic advection’ (Aref 1984). The asymptotic scaling law of
the scalar spectrum in this case may depend on the specific flow, because the fixed
velocity wavenumber vector in (2.18) may drive the Lagrangian scalar cascade in a
particular direction.

In the sequel, we distinguish between Lagrangian turbulence dynamics and
kinematics. The Kolmogorov—Obukhov—Corrsin theory (Monin & Yaglom 1975)
states that, in high-Reynolds-number flow, the cascade process of a passive scalar is
controlled by the large-eddy turnover time 7, independent of molecular viscosity. This
implies that for 7 > T,, the cascade is dominated by motions with scales smaller than
the Kolmogorov length scale, which may be of lesser importance for the Lagrangian
dynamics of turbulence. We therefore choose T, as the largest time in the investigation
of the time evolution of Lagrangian structures. Although the analysis above indicates
that the characteristic scale of Lagrangian structures decreases as time increases,
Fourier-space representation is not well suited to an investigation of the finite
geometry of the Lagrangian scalar field and corresponding non-local Lagrangian
structures. This issue will be addressed in §4.2 by analysis of the scalar-gradient
alignment and in § 5 by multi-scale geometric decomposition.

3. Simulation overview
3.1. Direct numerical simulation

The Navier—Stokes equations for forced homogeneous and isotropic turbulence in a
periodic box of side L =2n are written in the general form as

1
%‘: —uxo—V (i+2|"2) +V2u + f(x.1), (3.1)
V'u =03

where @ =V X u is the vorticity. In this study, the flow was driven by a random forcing
f(x, 1), which is non-zero for the Fourier modes with the wavenumber magnitude
less than two.

The DNS of isotropic and homogeneous turbulence was performed using a standard
pseudo-spectral method on a 256° grid. The flow domain was discretized uniformly
into N*® grid points. Aliasing errors were removed using the two-thirds truncation
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Total kinetic energy En= (>, a0")/2 0.915
Mean dissipation rate e=2v(>, k*an") 0.141
Root-mean-square velocity fluctuation u' =Q2E,,/3)""? 0.781
Taylor micro length scale Jr=(15vu?/€)\/? 0.804
Taylor-Reynolds number Re,=u'Ar/v 62
Kolmogorov length scale n=(3/e)l/* 0.052
Kolmogorov time scale 1, =(v/e)1/? 0.266
Spatial resolution Kinax 1 4.3
Integral length scale L,=(rn/2u?) [ dkE(k)/k 1.76
Eddy turnover time T,=L./u 2.26

TaBLE 1. Summary of DNS parameters.

method. A stationary turbulence was generated by maintaining constant total energy
in each of the first two wavenumber shells, with the energy ratio between the two
shells consistent with k=/3. The spatial resolution in spectral simulation is evaluated
as kpaxn, where n=(v/e)/* is the Kolmogorov length scale and the maximum
wavenumber k., is about N /3. Proper resolution of the Kolmogorov scale requires
kmaxn > 1. The value of k.. n was typically larger than 4.3 in our simulation to ensure
that we obtained accurate velocity fields for further Lagrangian computations. The
Fourier coefficients of the flow velocity were advanced in time using a second-order
Adams—Bashforth method. The time step was chosen to ensure that the Courant—
Friedrichs—Lewy (CFL) number was less that 0.5 for numerical stability and accuracy.

Table 1 lists parameters of the DNS flow fields used in this study, and figure 1 plots
the resulting energy spectrum. Corresponding Lagrangian statistics for the same box-
isotropic turbulent flow at similar Reynolds numbers in DNS and LES are reported
in Yang, He & Wang (2008). To demarcate Lagrangian dynamics and Lagrangian
kinematics discussed in §2.4, we will investigate the time evolution of Lagrangian
structures in two separate cases. The first, referred to as a ‘turbulent velocity field’,
consists of u(x,t) obtained from the previously described DNS in 0 < ¢t < T,.
The second, described as a ‘frozen velocity field” consists of an instantaneous field
from the DNS u(x,t=0). The frozen field was the result of running the DNS for
t <0 of the order of several T,. It is therefore an instantaneous snapshot from a
fully developed stationary turbulent field but remains frozen in time for the purposes
of solving (2.15). The instantaneous energy spectrum of u(x, t =0) is quantitatively
similar to figure 1.

3.2. Backward particle-tracking method

Equation (2.15) is equivalent to the diffusion-less limit of the advection—diffusion
equation in Eulerian form. The Eulerian finite-difference method for this pure
hyperbolic equation exhibits significant numerical dissipation when the scalar gradient
is high (e.g. LeVeque 1992), which is common in the evolution of Lagrangian scalar
fields. To avoid this, we convert the Eulerian equation (2.15) to a set of ordinary
differential equations as (2.1) to compute trajectories of fluid particles, which is
equivalent to tracing characteristics of (2.15). Another potential problem is that if
particles are tracked forward in time from #j, they will be distributed almost randomly
in space at later times, making it hard to reconstruct a continuous scalar field with
satisfactory resolution on a Cartesian grid.

Instead, to obtain the Lagrangian field at a particular time ¢, we applied a backward
particle-tracking method, which is absolutely stable, to deal with the convection term
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FIGURE 1. Energy spectrum of turbulence.

(e.g. Stam 1999; Nahum & Seifert 2006). At time ¢, particles are placed at the
grid points of N;’,, where N, could be greater than the grid number N of velocity
field, i.e. the resolution of the Lagrangian scalar field could be higher than the
velocity field. In this study, N, =1024, which is four times the resolution of the
velocity field. Then, particles are released and their trajectories calculated by solving
(2.1). A three-dimensional fourth-order Lagrangian interpolation scheme is used to
calculate fluid velocity at the location of a particle. The trajectory of a particle is then
obtained by the explicit second-order Adams—Bashforth scheme. The time increment
is selected to capture the finest resolved scales in the velocity field. All the accuracy
of numerical schemes and parameters in this study for particle tracking satisfies
the criteria proposed by Yeung & Pope (1988) so that the computation of particle
trajectories or Lagrangian characteristics are sufficiently accurate.

It is noted that the Eulerian velocity field here is reversed in time. In the simulation,
we save the Eulerian velocity fields from DNS on disk at every time step and
subsequently perform backward tracking from the particular time ¢ to the initial time
to with the reversed Eulerian velocity fields saved previously. After the backward
tracking, we can obtain initial locations of particles X,, which is equivalent to
obtaining the Lagrangian position function yr(x, ¢) for each particle located at the grid
at ¢t. From a given initial condition consisting of a smooth Lagrangian field ¢(x, 1)),
we can obtain the Lagrangian field at time ¢ on the Cartesian grid by (2.6) and (2.7),
or the simple mapping (2.11) with Lagrangian coordinates and position functions.

In implementation, we store the position X, at r=0 and X(Xy, f|t) at a given
time for each particle with the same index as binary files after the backward tracking,
which is equivalent to saving the information of v (x,r) of all the particles. Then
we can apply arbitrarily many different initial conditions to obtain corresponding
Lagrangian scalar fields at the particular ¢ from the same particle position files X
and X (X, t|t) in a single run. The tradeoff is that independent simulations are
required for each time ¢ at which ¢(x, ¢) is sought. Because ¢(x, ¢) is obtained via the
direct mapping (2.11) from the initial field, the probability density function (p.d.f.) of
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¢(x, t) is invariant with time and the scalar fluctuation variance

Var(g) = ((¢(x. 1) — (p(x., 1)))*)

is also invariant with time. Hence, in principle there is no numerical dissipation in
the computation of the Lagrangian scalar field by the backward particle-tracking
method.

As t — oo, the Lagrangian scalar field with a smooth initial condition may become
discontinuous or else develop exponentially small structures. If the backward particle
integration from ¢ to fy was exact for each particle, then the solution values on the
N ; grid would correspond to

L pL pL

o(iAx, jAy, kAz, 1) =/ // d(x,y,2,1)8(x —iAx)8(y — jAy)8(z —kAz)dxdydz
0 Jo Jo

i=1,...,N,, j=1...,N k=1,...,N (3.2)

ey P L P

where ¢(x, y, z, t) on the right-hand side is the exact continuous solution. Thus, our
calculation of ¢ at time ¢ on the discrete field would be exact but interpolated values
may have O(1) errors for sufficiently large ¢. In practice, we find that the largest time
for which we can obtain accurate, smooth and well-resolved Lagrangian scalar fields
simulated at the present resolution 10243 is the large-eddy turnover time 7, defined
in table 1.

To illustrate the Lagrangian scalar field at longer times using higher resolution
with the backward particle-tracking method, we place particles at one cross-section
(or any desired sub-domain) of the entire three-dimensional field prior to tracking.
We can then obtain the Lagrangian scalar field in a plane cut. Figure 2(a) shows
the Lagrangian scalar field on a plane cut 0 < x < 2n, 0 < y < 2w, z=m7 with a
4096 grid at t =2.5T, from a smooth initial condition ¢y = cosx at t =1, =0 driven
by a turbulent velocity field. The scalar field has become extremely convoluted with
signature stretched and spiral structures. The effects of resolution for a detail of
the scalar field, in the sense of (3.2), are shown in figure 2(b—d). This demonstrates
the effectiveness of the backward particle-tracking method in capturing the finest
scale features with increasing particle numbers for large ¢. The scalar field with the
same initial condition and the same time lapse in the frozen velocity field is shown in
figure 3. This shows substantially less detailed structure than for the turbulent flow.
Because straining and vortex motions in the frozen field are fixed, the stretched and
spiral structures are concentrated only in a small number of local regions.

3.3. Three initial conditions of the Lagrangian scalar field
In this study, we investigated the evolution of Lagrangian scalar fields with three
different initial conditions ¢\ in the same domain of the velocity field. The iso-
surfaces of these initial fields are closed surfaces. These are as follows:
(1) ¢(()1) = g(x0)g(y0)g(z0), where the Gaussian function
g(x) = exp(—0.5(x — m)?).

The iso-surfaces of ¢ are concentric spheres/blob-like surfaces.
(i) @3 = g(x0)g(yo)Fo, where the filter function Fy= f(x0) f(y0)f(z0) with

X —TT 6
£(x) = exp (—6( - ) )
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(@) Plane cut of the full 3D scalar field with resolution 40962, 0 < x < 2m and 0 < y < 2.

(b) 10242 (c) 20482 (d) 40962

/4

FIGURE 2. The x—y plane cut at z=mn from the three-dimensional Lagrangian scalar field
at +=2.5T, with the initial condition ¢y = cosx in the forced stationary homogeneous and
isotropic turbulence, and zoomed parts of plane cuts at a small region 2.5 < x < 2.9 and
3.6 < y < 4 with increasing resolutions.
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L
\

FIGURE 3. The x—y plane cut at z=m from the three-dimensional Lagrangian scalar field at
t =2.5T, with the initial condition ¢y = cosx and resolution 40962 in the frozen turbulent field.

which corresponds to iso-surfaces that are coaxial and tube-like in the z-direction.
The filter function Fy used here makes the corners of iso-surfaces curved for improved
identification (Bermejo-Moreno & Pullin 2008).

(111) ¢(()3) = g(x0)Fy, which corresponds to mostly parallel planes along the x-axis.
Two typical plane cuts of these three initial fields are shown in figure 4. The
characteristic length scale of the initial fields is comparable with the integral length
scale L, in turbulence. It is noted that topological properties of Lagrangian structures
are invariant in time. For example, if an iso-surface is topological sphere (i.e. simply
connected) at + =0, then it remains so for all finite ¢.

4. Evolution of Lagrangian scalar fields
4.1. Growth rate of the surface area of Lagrangian structures

The particle simulations for the Lagrangian scalar fields were done with 1024° and
correspond to an evolution time from initial conditions ¢(()’), i=1,2,3, from r=0
to r=T,. At times t =aT,, where o ={1/16,1/8,1/4,1/2,3/4,1}, Lagrangian scalar
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FIGURE 4. Typical plane cuts with iso-contour lines of three initial Lagrangian scalar fields.

(@ t=0 (b) t=T,/16 () t=T,/8

(d) t=T,/4 (e) t=T,2

\

)

FIGURE 5. Iso-surfaces (¢ =0.3) of three-dimensional Lagrangian scalar fields with the
blob-like initial ¢(()1) at different times.

fields ¢(x, «T,) were obtained with three different initial conditions. For example,
the evolution of the Lagrangian structure with the blob-like initial condition ¢(()1)
corresponding to the iso-surface ¢ =0.3 in turbulence is shown in figure 5. From a
simple sphere, after a finite time, the iso-surface is distorted to a highly convoluted
shape with small-scale rolled-up structures. The spreading or widening of the spectrum
of ¢(¢) in figure 6 shows a cascade process from large scales to small scales for the ¢(¢)
field in stationary isotropic turbulence and the frozen turbulent field. The difference
between spectra from two cases is very small at the early time, but then becomes
noticeable with increasing time. The Lagrangian scalar cascade in turbulence is faster
than that in the frozen field by dynamic convection motions. At a longer time, the
difference in spectra should be more apparent as implied in figures 2 and 3.
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FIGURE 6. Spectra of Lagrangian scalar fields with the blob-like initial qﬁ(()l) at different times
in stationary isotropic turbulence (O) and the frozen turbulent field (O).

The exponential growth of the surface area A(f) of Lagrangian structures, initially
proposed by Batchelor (1952b) for infinitesimal material elements, was also verified
numerically by Goto & Kida (2007) using finite-sized material surfaces. To validate
this in the present study, typical Lagrangian structures were selected as iso-surfaces at

iso-contour levels ¢ ={0.1,0.2, ..., 0.9}. Each iso-surface is discretized on a triangular
mesh, and the total area is the sum of areas of all the individual triangles. The area
growth rate
1 A(r)
1)=-1 — 4.1
£ = ;1o () @)

is computed by (2.5), and then the average growth rate (£(¢)) at a particular time was
presently obtained by taking an average over iso-surfaces of ¢ at nine contour levels.
As shown in figure 7, following a rapid, monotonic growth in 2 ~ 3 Kolmogorov
times, the average stretching rate approaches a statistical stationary state around
§=(0.33+04)7," Uin turbulence. This observation is consistent with that of Goto &
Kida (2007).

4.2. Alignment of the Lagrangian scalar gradient in turbulent and frozen flows

The evolutionary geometry of Lagrangian structures may be related to the turbulent
velocity field or vorticity field by preferred alignments of the scalar gradient with the
background vector fields. Batchelor (1952b) predicted that the vorticity @ and the
Lagrangian scalar gradient V¢ tend to become perpendicular. To investigate the time
evolution of this alignment, we define the cosine of the angle between these vectors
as

® Vo

Ao = . 4.2
0V 42

Similarly, the cosine of the angle between u and V¢ can be defined as
_x-vo (4.3)

M Vel
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FIGURE 7. Temporal evolution of the average stretching rate (&) rescaled by the reciprocal of
the Kolmogorov time scale 7, of Lagrangian structures that are obtained from iso-surfaces of

$»=1{0.1,0.2,...,0.9} with gb(()l) in stationary isotropic turbulence.

Figure 8 shows the temporal evolution of p.d.fs of |4,| and |/,| for both the turbulent
(figure 8a, b ) and the frozen (figure 8¢, d) velocity fields. The p.d.f's of |4,] in isotropic
turbulence in figure 8(a) indicates evolution from an almost uniform distribution in
the initial condition at + =0 towards a strong peak at m/2. We also find that V¢
tends to become normal to the local velocity as illustrated in figure 8(b) showing the
p.d.f:s of |4,]. The time evolution of p.d.f:s of |4,| and |4,| in the frozen turbulent field
is shown in figure 8(c, d). A comparison of figure 8(a) with figure 8(b) shows that
Lagrangian surfaces in stationary turbulence tend to align with vortex lines rather
than streamlines at r =T,. In contrast, as shown in figures 8(c) and 8(d) Lagrangian
surfaces advected by the frozen velocity field over long times appear to preferentially
align with streamlines rather than vortex lines.

4.3. Transport equations for alignment angles

These observations on alignment angles can be understood by analysis of the transport
equations for |A,| and |4,|. We assume (u) =0. From (2.15), we can obtain the vector
identity for V¢, u, and a vector v

—(v Vo) = (6 +u-Vo—v- Vu) -Vo, (4.4)
and then transport equations for @ - V¢ and u - Vo:
—(w Vo) = (6 4+V X (0 % u)) Vo, (4.5)

D Ou
oo = (5 -vo. (46)
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FiGure 8. Temporal evolution of p.d.f:s of |4,| and |4,| obtained from the Lagrangian scalar

field with 4)(()1) in (a, b) stationary isotropic turbulence and (c, d) the frozen turbulent field,
where 4, is the cosine of the angle between w and V¢, and 7, is the cosine of the angle
between u and V.

Introducing the unit vector ny =V¢/|Ve|, we can obtain the transport equation for
|[Vo| from (2.15)
D|V¢|
Dt

where § = (Ou;/Ox; 4+ Ou;/0x;)/2 is the rate-of-strain tensor. In an unsteady flow,
from (4.5), (4.6) and the vorticity equation in a viscous flow

= —(ny - S-ny)|V4), (4.7)

D
—D(;) = Vu + Vo, (4.8)
we can derive equations for 4, and A,
DA, 1 Diwl|\ . Vo,
= *Seny— —— | A+ — ‘ng, 4.9
Dt <""’ " o] Dt>A Ty @ e (9)

D/, 1 Dlu| 1 [du
= (ns-S-ny— — i+ — (= |~ ny. 4.10
Dt <"¢ "7 ] Di )A + |u| (a:) o (4.10)
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In the frozen velocity field, du/0t = 0, and then

%(a} Vo) = (V X (0 x u))- Vo, (4.11)
= (- 99) =0, (4.12)
so the equations for 4, and 4, become
Il)jt“’ = (n(,J *S-n,— i)|u . V|w|> Aw + |:)|(V X (@ X u)):ng, (4.13)
Ii;;" =(ny*S-ny—n, Viul)i, (4.14)

where n, =u/|u|.
On a fluid particle, the solution of (4.7) is given by

[Vo(t)| = |Ve(to)| exp (—/ ng*S-ny dt’> . (4.15)

For both the turbulent and the frozen velocity fields we may write for the scalar
gradient

0 1/2
(IVo(t)) = <2/0 k2E¢(k,t)dk> ) (4.16)

A consequence of the widening scalar spectrum E,(k, t) discussed in §2.4 and (4.16),
where the integral is weighted by k2, is the progressive amplification of (|V¢(¢)|). This
implies that in (4.15), statistically

<I’l¢ -S- n¢> < 0. (417)

Let the principal strain rates for S8 be I, I's, I',, with corresponding unit vectors
along the principal axes of strain e,, eg, e,. In incompressible flow, Iy, + Iz + I}, =0
and we specify the order I, > I'y > I'),. Ashurst et al. (1987) showed that statistically
I, >Tp>0 and I, <0 in isotropic turbulence. In addition, the alignment vector
A =ngy-e; is defined as the cosine of the angle between n, and e;. Because the passive
scalar gradient tends to align with the most compressive strain direction in turbulent
flow (e.g. Ashurst et al. 1987; Ruetsch & Maxey 1992; Brethouwer et al. 2003) and
referring to (4.17), we hypothesize that in turbulent flow or the frozen turbulent flow,

(ng-S-ny) = (A + (Ipiz) + (I,A0) ~ O(T,) < 0. (4.18)

The magnitude of the term (n, - V|u|) in (4.14) can be reasonably assumed small in
comparison with that of (n4-S-n,), because there is no preferred alignment between
n, and V|u|. Thus, from (4.14) and (4.18), in general the volume-averaged |/,| can be
expected to decrease exponentially with time in the frozen turbulent field as

(I4ul) ~ (I 2uol) exp(I't), (4.19)

with I" <0 and 4,0 =4,(t =0). In other words, the ¢-field in the frozen velocity field
is attracted to a stream-surface field whose iso-surfaces are stream surfaces comprised
of steady stream lines.

On the other hand, D{|@|)/Dt ~0 for stationary turbulence, which implies that
(4.9) could be simplified as

DA,
Dt

~ (ny+ S ny)iy +VO(R,), (4.20)
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FIGURE 9. The log-linear plot of the temporal evolution of 7 and 7, in stationary isotropic
turbulence and the frozen turbulent field.

where v is small in high-Reynolds-number turbulent flow and R, =|V’®|/|w|. By
(4.20) the approximation for the volume-averaged |4, in turbulent flow could be

O(R.)
r

with I <0 and /,0 = 4,(t =0). The exponential decay in (4.21) appears to be similar
as that in (4.19) for small time ¢, which is then attenuated for larger ¢ owing to the cu-
mulative effect of the small, inhomogeneous viscous term. Hence, the analysis suggests
that ¢-field in stationary turbulence may tend initially to be attracted towards a vortex-
surface field whose iso-surfaces are vortex surfaces comprised of vortex lines, but that
perfect, long-time alignment is inhibited owing to small but persistent viscous effects.

Furthermore, the last inhomogeneous terms in both (4.10) and (4.13) could be
non-trivial. Hence, the evolution of {|4,|) in turbulence may perhaps be described
qualitatively by the model

(l2]) ~ (| 4e0l) exp(I't) 4 v (1 —exp(I'1)), (4.21)

(12ul) ~ ([ Auol) exp(I't) 4 ( fu( ), (4.22)
with a similar model for the evolution of (|4,|) in the frozen field
(I2u]) ~ (I4u0l) exp(I'1) + ( fo(4o))- (4.23)

Here, the functions (f,(4,)) and (f,(4,)) are not expected to be as small as the last
term in (4.21) due to the additional non-trivial inhomogeneous terms in the governing
equations of A, and A,. This suggests that the Lagrangian scalar field appears to
show only a weak tendency to be attracted to the stream-surface field in turbulence
and to the vortex-surface field in the frozen field for long times.

The temporal evolution of the normalized volume-averaged statistics

o =)/ (2e0l)  and 2y = (ul)/{Iu0l)

is plotted in figure 9. As shown in (4.19), the evolution of J. in the frozen field shows
strong exponential decay from r =0 to t = T,, which implies that Lagrangian structures
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Cases Approximation Attractor Tendency (early — late)
Zw in stationary isotropic turbulence (4.21) Vortex surface Strong — weak

A, 1n stationary isotropic turbulence (4.22) Stream surface Medium — weak
%w in the frozen turbulent field (4.23) Vortex surface Medium — weak

Ay in the frozen turbulent field (4.19) Stream surface Strong — strong

TaBLE 2. Summary of the evolution of alignments for the Lagrangian scalar field.

are progressively attracted to frozen stream surfaces. The evolution of 4, in isotropic
turbulence shows even faster exponential decay from #=0 to r=T,/2 than that of
A, in the frozen field, but then as estimated in (4.21), the viscous effect tends to slow
down the decay corresponding to the tendency that Lagrangian structures become
attracted to vortex surfaces in turbulence. Furthermore, the evolution of 4, in isotropic
turbulence and 4, in the frozen field rapidly approaches a statistical stationary state
as shown in the approximations (4.22) and (4.23), which implies relatively weak
alignments in both cases. These evolutions of alignments and corresponding tendencies
of attractions of stream surfaces or vortex surfaces at early and late stages are summar-
ized in table 2. Here, we remark that the numerical results for the alignment issue are
based on the initial condition ¢! with the large initial length scale L.. The correspond-
ing results with initial conditions ¢® and ¢® show quantitatively similar behaviours.

4.4. Formation of spiral and stretched Lagrangian structures

An interesting observation from figure 5 is the rolled-up or spiral structures at later
stages of the Lagrangian evolution. This phenomenon was discussed by Ruetsch &
Maxey (1992) as multiply layered sheets or spiral structures of strong passive scalar
gradient when Sc>> 1. Previous studies (e.g. Ruetsch & Maxey 1992; Brethouwer
et al. 2003) observed that vortex tubes are surrounded by scalar gradient sheets over
a wide range of Prandtl/Schimdt numbers. It is notable that rolled-up structures,
perhaps generated by vortex tubes, have themselves been observed mainly in scalar
simulations at high Schmidt numbers. These highly convoluted Lagrangian structures
were denoted as ‘folding effects’ by Goto & Kida (2007), who argued that the folding
is produced by coherent counter-rotating eddy pairs. Presently, we hypothesize that
the formation of spiral structures of ¢ in eddies corresponding to rolled-up shapes of
Lagrangian structures can be also explained as the alignment discussed in §§4.2 and 4.3
between the gradient of ¢ and other vectors obtained from the local velocity field.

A simple kinematic model can be constructed: consider a two-dimensional exact
solution of the scalar dispersion (e.g. Rhines & Young 1983). The governing equations
for scalar ¢(r, 0, t), vorticity w(r, 0, t) and streamfunction (r, 6, t) in two-dimensional
polar coordinates are

o9 Yy op 3P0y _
o T r <ae or 06 ar> =0, (4.24)
Ow 0y 0w  Owoy\
m+<wm_ww»% (425)

19 0 1@
<mrm+ﬂwﬂw (4.26)
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Figure 10. Evolution of spiral structures for the two-dimensional solution (4.28). The
illustration of orthogonality between u and V¢ is shown in the rightmost subfigure.

For illustrative purposes we consider initial conditions corresponding to a linear scalar
gradient embedded within an axisymmetric vortex

#(r,0,0) = rsin6, Mnam=fgﬂm Q=e", (4.27)
r ar
but emphasize that the following scenario is more general. The vortex remains steady
while ¢ evolves as
o(r,0,t) = rsin(6 — 21). (4.28)
The evolution of (4.28) is plotted in figure 10, where it is seen that the linear
scalar gradient is wound into tight spirals by convective action of the vortex. It is
straightforward to obtain /, as
cos(6 — £2t)

oy = — , . (4.29)
\/cos2(0 — 2t) + [sin(0 — £21) + 28272t cos(d — £21)]?

At t=0, |1,]=]|cos8|, where the probability of 6 is uniformly distributed in 0 <
0 <2m, so the p.d.f. of x=]4,| in the entire two-dimensional plane is a monotonic
increasing function (2/m)(1 — x?)~/? with 0 < x < 1. As t — oo, from (4.29), |4,| — 0
everywhere, so the p.d.f. of |4,| is asymptotic to a delta function 8(x —¢€), € — 0. The
evolution of the p.d.f. of |4, in this two-dimensional case is qualitatively consistent
with that shown in figures 8(b) and 8(d). Since Lagrangian structures are topologically
invariant, then starting from any ¢, except u - V¢po =0, this model supports the
hypothesis that the spiral is the most probable structure within eddies. In figure 11,
we can visually observe spatial coincidences between spiral Lagrangian structures
represented by iso-contour lines of ¢(z =T,) and vortical structures represented by
regions of high enstrophy (w;w;)"/? in isotropic turbulence. Additionally, elongated
Lagrangian structures induced by strong stretching motions are observed to wrap
vortex tubes.

4.5. Lagrangian Q—R analysis
The local topology of flow field can be classified by the invariants Q and R of the
velocity gradient tensor A;; =0u;/0x; (Chong, Perry & Cantwell 1990), where
Q == _%Aiinja R == _%AijAjkAki- (430)

One way to quantify the relation between Lagrangian structures and local flow
patterns in turbulence is to use the mean value of the norm of the scalar gradient
|[V¢| conditioned on Q and R at t =T,. We denote this by (|V¢|| O, R). As shown in
figure 12, the curve (27/4)R*> + Q* =0 divides the R—Q plane into four regions, each
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FiGURE 11. Iso-contour lines of ¢(r =T,) and contours of the enstrophy at t =7, on the x—y
plane cut at z == with the blob-like initial ¢>(()1) in stationary isotropic turbulence.
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FIGURE 12. The mean value of the gradient [V¢| of the Lagrangian scalar field conditioned
on Q and R at r =T, in stationary isotropic turbulence. The whole plane is divided into four
regions by the curve (27/4)R*> 4+ Q3 =0. The local flow patterns for each region are upper left:
stretched vortex; upper right: compressed vortex; lower left: axial strain; lower right: bi-axial
strain.

with different local flow structure. Details of the local flow pattern for each region
are described by Brethouwer et al. (2003) and references therein. Because the number
of samples is too small outside the pear-shaped contour to determine an accurate
(IVo|| Q, R), the values in the white regions are ignored. We observe steep scalar
gradients in regions dominated by bi-axial strains, which is consistent with the result
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obtained by scalar simulation with Sc =0.7 from Brethouwer et al. (2003). This result
corresponds to the scenario of stretched Lagrangian structures in straining regions. In
particular, we also observe strong scalar gradients in regions inside stretched vortex
tubes, which could correspond to the scenario of spiral Lagrangian structures in
eddies as shown in figures 2 and 11.

5. Multi-scale geometric analysis of Lagrangian structures
5.1. Description of the methodology

In this section, we apply the multi-scale geometric methodology of Bermejo-Moreno &
Pullin (2008) to explore the non-local geometry of Lagrangian structures at different
length scales. Starting from a given periodic three-dimensional field, this methodology
has three main steps: extraction, characterization and classification. The extraction of
structures is itself done in two main stages. In the first stage, the curvelet transform
(see Candes et al. 2005) applied to the full three-dimensional Lagrangian scalar field at
an instant in time provides a multi-scale decomposition into a finite set of component
three-dimensional fields, one per scale. Second, by iso-contouring each component
field at one or more iso-contour levels, a set of closed iso-surfaces is obtained that
represent the structures at that scale.

The basis functions of the curvelet transform, which we refer to as ‘curvelets’,
are oriented needle-shaped elements in space and a wedge in frequency, and they
are localized in scale (Fourier space), position (physical space) and orientation. The
projection of the scalar field onto the curvelet basis produces a set of decomposed
fields, each characterized by a radial (in Fourier space) index j. Let the number of
grid points in each spatial direction be 2". Then for each scale j= jo,..., j., with
Jo=2, j.= log,(n/2), the associated curvelet radial basis function has support near the
dyadic corona [2/7!, 2/*!] in Fourier space. This gives a multi-scale decomposition
of the original scalar field into a total of j, — jo + 1 scale-dependent fields. For
convenience we will subsequently label scale-dependent fields by the index i = j — 2,
i=0,...,Jj,—2, with i =0 corresponding to the largest-scale field and i = j, — 2 the
smallest resolved-scale field. Curvelets are naturally suited for detecting, organizing
or providing a compact representation of multi-dimensional structures. The latest
studies on applications of curvelets to turbulence were reported by Bermejo-Moreno
et al. (2009) and Ma et al. (2009).

The characterization stage begins with the joint p.d.f., in terms of area coverage on
each individual surface, of two differential-geometry properties, the absolute value of
the shape index S and the dimensionless curvedness C,

2 K1+ K2 V [kt +k3
S = |——arct — |, C=3— , 5.1
‘ narcan(/ﬂ_}(z)‘ Y (5.1)

where «; and «, are principal curvatures, A is the surface area and V is the
volume contained within the three-dimensional surface. Characterization is based
on the construction of a finite set of parameters defined by algebraic functions of
dimensionless forms of first and second moments of the joint p.d.f. of § and C for
each individual surface. An additional parameter,

)= J36m

V2/3

— (5.2)
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(a) Blob case (b) Tube case (¢) Sheet case
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FIGURE 13. Iso-surfaces of three initial fields for the contour level ¢§ =0.95 and corresponding

feature centres on the S—C plane with the predominantly blob-, tube- and sheet-like regions
sketched.

measures the geometrical global stretching of the individual surface. Taken together,
this parameter set defines the geometrical signature of the iso-surface by specifying
its location as a point in a multidimensional ‘feature-space’.

A subset of the feature space is the so-called visualization space. This comprises a
subspace of three parameters (3, C, 1), where feature centres S and C are respectively
dimensionless forms of Welghted first-order moments of the Jomt p.d.f. of S and
C. Each closed iso-surface is then represented by a single point in the visualization
space (S C, A). At each scale, the cloud of points in visualization space represents all
structures at that scale, for a specified iso-contour value. We remark that, for the full
field, iso-surfaces of ¢ are topologically invariant in time. This is not the case for the
multi-scale component fields after curvelet decomposition, where, in general, many
individual disconnected iso-surfaces are generated. Nonetheless, the set of iso-surfaces
at each scale can be interpreted as containing information on the statistical geometry
of structures at that scale. .

Finally, the geometry of a structure is classified by its location (S5, C, 4) in the
visualization space. An analysis of a generic surface shows that different regions in
the visualization space can be viewed as representing different geometry shapes. Blob-
like structures occupy the region near the point (1, 1, 1) that corresponds to spheres.
Tube-like structures are localized near the (1/2, 1, ) axis where A is an indication
Qf how stretched the tube is, and the transition to sheet-like structures occurs as
C and /1 decrease. An illustration for three typical geometry shapes in the present
study and corresponding feature centres on the S—C plane with the predominantly
blob-, tube- and sheet-like regions sketched are shown in figure 13. More details
on the classification and the visualization space (S C, A) are shown in figures 6
and 7 of Bermejo-Moreno & Pullin (2008). The clustering algorithm in the original
methodology was not applied in this study.

5.2. Multi-scale diagnostics

Next, we analyse the non-local geometry in the evolution of ¢(()1) of § 3.3 corresponding
to Lagrangian blobs. Figures 14 and 15 show x—y plane cuts at z=m of the full
Lagrangian scalar fields with colour intensity proportional to ¢, O <¢ < 1 for
sphere/blob-like initial qb(()l) at different times «7, in stationary isotropic turbulence
and the frozen turbulent field respectively. The evolution of ¢ in the two cases is
similar in the early stages at t =7,/16 and ¢ = T,/8. Then the Lagrangian structures in
turbulence are stretched or wound by dynamic turbulent motions producing alignment
between Lagrangian surfaces and vortex lines as discussed in §§4.2 and 4.4. In contrast,
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FIGURE 14. Plane cuts normal to the z-axis at its midpoint of the original three-dimensional

Lagrangian scalar fields with the blob-like initial ¢(()1) in stationary isotropic turbulence at
different times.

in the frozen turbulent field, Lagrangian structures are attracted onto a frozen stream
surface and are therefore strained only in fixed regions to form more nearly singular
local structures as shown in (4.19).

The multi-scale methodology described in § 5.1 was applied to the three-dimensional
Lagrangian scalar fields at each instantaneous time. For the given resolution of 10243
grid points, we will analyse the first six scales provided by the curvelet transform.
They will be denoted by a scale number, from 0 to 5. Increasing values of the
scale number correspond to smaller scales. For example, the plane cuts of ¢ at
t =T, in turbulence for each one of the filtered scales resulting from the multi-scale
analysis are shown in figure 16, which corresponds to the original field shown in
figure 14(f).

Volume-data p.d.f.s obtained for the Lagrangian scalar field for each one of the
filtered scales are shown in figure 17. The widening of the p.d.f.s at small scales
indicates that there is an increasing population of small-scale structures appearing
in the Lagrangian scalar field with increasing time: this corresponds to the cascade
process in Fourier space as illustrated in figure 6. In figure 18, exponential tails
in normalized p.d.f:s at intermediate and small scales are observed. This shows the
strong intermittency in the Lagrangian scalar field at r = T,, which corresponds to the
sheet-like small-scale structures as shown in figures 14(f) and 16(d—f’). The spectra of
¢ at t =T, associated with the original scalar field for each one of the filtered scales
are shown in figure 19. Combined with figure 14, we observe localization in both
Fourier and physical domains through the curvelet filtering.
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FIGURE 15. Plane cuts normal to the z-axis at its midpoint of the original three-dimensional

Lagrangian scalar fields with the blob-like initial ¢(()1) in the frozen turbulent field at different
times.

5.3. Geometry of Lagrangian structures

Iso-surfaces of ¢(x, aT,) with three different initial conditions of § 3.3 were obtained
for each of the filtered scales after the multi-scale decomposition. The contour values
¢f at scale i are computed from the volume p.d.f:s as

¢ = (¢) +2¢/Var(p) + 4,  i=1~35 (3-3)

with A =|@pax — Pmin] X 5 %. This choice eliminates artificial, tiny high-frequency
oscillations induced by the curvelet transform near the boundary of computational
domain. We argue that the sample of iso-surfaces corresponding to the same relative
contour value represents the typical statistical geometric properties at each scale. An
additional step in the extraction is applied to periodically reconnect those structures
that penetrate the box boundaries, to properly account for their geometry.

The largest scale i =0 strongly depends on the initial conditions. This is of less
relevance in this analysis and the contouring for scale 0 was only applied for the
iso-contour level ¢§5=0.95 at r =0 and r=7,/16 to show the difference among three
initial conditions. Corresponding iso-surfaces of three initial fields and feature centres
on the S—C plane are shown in figure 13. A minimum number of points, N,,;, = 1500,
is considered a threshold for a structure to be analysed, so that it is sufficiently
smooth for a reliable calculation of its differential-geometry properties. We remark
that this number is higher than N,;, =300 used by Bermejo-Moreno & Pullin (2008)
and Bermejo-Moreno et al. (2009), because near-singular structures tend to be more
relevant in Lagrangian fields than in Eulerian scalar or enstrophy fields with a finite
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(a) Scale 0 (b) Scale 1 (¢) Scale 2

(d) Scale 3 (e) Scale 4

FIGURE 16. Plane cuts normal to the z-axis at its midpoint of the Lagrangian scalar field at
t =T, for the blob-like initial ¢((,1) in stationary isotropic turbulence for each one of the filtered

scales resulting from the multi-scale analysis.
(a)t=T,/16

(b)t=T,/8 () t=T,/4
9 '

103 .

4
-1.0

FIGURE 17. Volume-data p.d.f.s of Lagrangian component scalar fields of different scales with
¢(()1) at different times in stationary isotropic turbulence.
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FIGURE 19. Spectra of the full Lagrangian scalar field and component fields with ¢(()1)

att=T,.

viscosity. This threshold avoids spurious features from fragmentation while retaining
most sample structures in the characterization step for this case.

The structures at each scale in turbulence are now characterized and represented
in the visualization space (S, C, 1) as described in §5.1. Figures 20 and 21 show the
depiction of the multi-scale iso-surfaces in visualization space and the S—C plane,
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(@) t=T,16 (b)t="T,/8

(c)t=T,/4

FiGURre 20. (Colour online) Visualization space for Lagrangian structures with the blob-like

initial ¢>(()1) at different scales in stationary isotropic turbulence (O scale 0; O scale 1; A scale 2;
V scale 3; > scale 4; © scale 5). The sizes of symbols are scaled by the log of surface area.

a corresponding subspace, with increasing . Each component graph shows all iso-
surfaces across all scales colour coded for scale as indicated in the captions. Sizes
of symbols in these figures are scaled by the logarithm of the surface area of the
structures. At r=T,/16, there are only a few iso-surfaces that are clustered in the
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upper right of the visualization space in the view shown. This corresponds to blob-
like structures. As  increases, progressively, most structures are stretched towards the
sheet-like region with low C and 4, while we find only a few structures that appear
to migrate first through the tube-like region near the axis {S=1/2, C =1, 4}. For

example, at r =T,/2, structures with low values of C are dominant, and a few get close
to the tube-like region in figure 21(d). This could be interpreted as the evolutionary
breakdown of Lagrangian blobs that first distort, while a few portions might be rolled
up into tube-like structures, and then are either broken down or stretched laterally
into sheets or else are perhaps part of vortices whose velocity fields strain small-scale
structures into sheet-like form.

Furthermore, it seems the appearance of tube-like structures occurs later in that
time evolution. In figure 21(e, f), between t =37, /4 and ¢ = T,, more structures appear
in the vicinity of the tube-like region. Details of the multi-scale decomposition within
the visualization space of the component fields at ¢+ =7, with the blob-like initial
condition ¢(()1) are shown in figure 22. This depicts clouds of points, corresponding

to each of scales 1-5 in the §-C plane. We observe a geometrical progression from
blobs through tubes to sheet-like structures with decreasing length scale. Here, we
note that a spiral-like sheet of small thickness could fill a substantial volume with the
space in between its turns deformed into a tube-like geometry as the sheet rolls up.
After filtering, this composite structure would appear as a virtual tube with a larger
cross-sectional scale, in terms of averaged radius, than the thickness of the sheet itself.

It is notable that the region of visualization space occupied by the cloud of all
Lagrangian scale structures at t =T, is similar in shape to the region of visualization
space occupied by the Eulerian enstrophy and dissipation across all scales in figures 12
and 13 of Bermejo-Moreno et al. (2009). The former is a consequence of Lagrangian
evolution whilst the latter are instantaneous Eulerian fields. There are differences,
however, in which Lagrangian structures tend to show more sheet-like geometry at
intermediate and small scales. The cloud of Lagrangian structures at scale 1 in the
visualization space occupies a similar region of the visualization space to that of the
Eulerian enstrophy at scale 3 (Bermejo-Moreno et al. 2009), and a passive scalar with
Sc=0.7 at scale 4 (Bermejo-Moreno & Pullin 2008). The corresponding wavenumber
range of scale 1 is approximately between 3 and 20. This implies that the geometry
transition of Lagrangian structures from blob-like shape to sheet-like shape begins
earlier in scale space than for Eulerian fields. This is possibly due to the lack of viscous
dissipation for Lagrangian evolution. As described in §4.4, Lagrangian structures are
exposed by persistent straining motions and wound by vortices, but are not subject to
smoothing by a dissipation mechanism. The dominant sheet-like structures with strong
scalar gradients have an impact on accelerating passive scalar variance dissipation
with a finite diffusivity and cause strong intermittency in passive scalar statistics
(see Warhaft 2000). Furthermore, the similar-shaped clouds at scales 4 and 5 in
figure 22 might imply the self-similar geometry of Lagrangian structures at small
scales, which could provide some support for structure-based subgrid-scale modelling.
To better investigate this possible self-similar geometry feature, simulations of ¢ in
higher Reynolds number turbulence with a larger inertial range could be helpful.
This requires, however, much higher resolution for both the turbulent field and the
Lagrangian scalar field than is employed presently.

Results from the multi-scale geometric analysis applied to Lagrangian structures
in the frozen turbulent field are shown in figures 22 and 23. We find a similar
geometry transition as that in turbulence but with less small-scale structures at the
later stages, which is consistent with the comparison of spectra shown in figure 6.
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FIGURE 22. (Colour online) The $-C plane of the visualization space for each one of the

filtered scales with the blob-like initial field 4)(()1) at t =T, in stationary isotropic turbulence
(upper row in each subfigure) and the frozen turbulent field (lower row in each subfigure). The
sizes of symbols are scaled by the log of surface area.

Moreover, in general, smaller S and C at intermediate and small scales indicate that
Lagrangian structures in the frozen velocity field exhibit more sheet-like shapes. These
observations can be better understood by considering average feature centres over
all the structures obtained from the extraction step in the multi-scale decomposition
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FIGURE 23. (Colour online) The S-C plane of the visualization space for Lagrangian structures

with the blob-like initial ¢(()1) at different scales in the frozen turbulent field (O scale 1; A scale
2; V scale 3; > scale 4; < scale 5). The sizes of symbols are scaled by the log of surface area.

for each scale. The three average geometric feature centres in visualization space are
plotted in figure 24. The differences of (C);, ($); and (2); in the two flow cases show
that near-singular structures tend to be formed more easily in the frozen turbulent
field, because strong straining regions are always located at the same spatial regions
as clearly indicated in figures 3 and 15.

The evolution of Lagranglan structures with the tube-like and sheet-like initial
¢-fields corresponding to ¢> and qb((f) of §3.3 in turbulence is shown in figures 25 and
26, respectively. At early times, the geometries of large-scale structures represented
by the feature centres at scale 0 at r=T7,/16 are different in all three cases. But we
observe that all fields evolve so as to produce similar-shaped clouds of structures
at t =T,, which is verified by similar average feature centres at each scale shown in
figure 24. This suggests that the cloud shape shown in figure 21(f) is a Lagrangian
attractor that is sensibly independent of the details of initial ¢. In this interpretation,
the memory of the initial geometric property of the Lagrangian fades after the
Lagrangian integral time Ty =~ 37,/4 in chaotic motion, where T is obtained from the
Lagrangian velocity autocorrelation (Yang et al. 2008). An alternative but perhaps
related explanation is that the similarity, in visualization space at late times, of
all three present evolved Lagrangian fields and instantaneous Eulerian fields could
be a consequence of the statistically steady character of the underlying forced box
turbulence DNS, i.e. Lagrangian structures tend to follow and to be attracted to
vortex surfaces in high-Reynolds-number turbulence.

6. Conclusions

In this study, the particle backward-tracking method was applied to the computation
of the temporal evolution of high-resolution Lagrangian scalar fields ¢(x, ) in velocity
fields from unsteady, forced, stationary isotropic turbulence and also from a velocity
field obtained from a turbulence simulation but frozen in time. Lagrangian structures
were extracted as iso-surfaces of the Lagrangian scalar field ¢(x, ). From the evolution
of finite-sized Lagrangian structures in turbulence, exponential surface area growth
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FIGURE 24. Average feature centres at different scales for the Lagrangian scalar field with
different initial conditions at + = 7, in stationary isotropic turbulence (solid lines) and the
frozen turbulent field (dashed lines).

is verified and the growth rate normalized by the reciprocal of the Kolmogorov
time scale is approximately 0.33 + 0.4. Stretched structures are observed in highly
straining flow regions and rolled-up structures are found in stretched vortex tubes. The
formation of rolled-up or spiral structures in the Lagrangian scalar field is consistent
with observed alignment between the scalar gradient and vorticity, and the moderate
normal alignment scalar gradient and the local velocity. A simple two-dimensional
model of a scalar field wound by an axisymmetric vortex reproduces these features.
We find that iso-surfaces of the Lagrangian scalar field are attracted to steady
stream surfaces in the frozen velocity field. In contrast, these tend to follow and
almost attach to vortex surfaces for the turbulent velocity field, but ultimate, long-
time alignment is repressed by the cumulative action of viscous effects. Furthermore,
the tendency for the formation of near-singular, sheet-like Lagrangian structures is
more apparent in the frozen versus the turbulent velocity field owing to the presence of
time-invariant straining regions in the former. It is expected that these two differing
alignment scenarios would lead to quite different long-time behaviours and that
this constitutes a principal distinction separating the kinematics from the turbulent
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FIGURE 25. (Colour online) The S—C plane of the visualization space for Lagrangian structures

with the tube-like initial ¢(()2) at different scales in stationary isotropic turbulence (O scale 0;
O scale 1; A scale 2; V scale 3; > scale 4; ¢ scale 5). The sizes of symbols are scaled by the
log of surface area.

dynamics of Lagrangian structures. Moreover, we suggest that this could lend support
to hypotheses both concerning geometric similarities between Lagrangian scalar fields
and corresponding vorticity fields, and also the independence of geometric signatures
of Lagrangian structures on initial conditions of the Lagrangian scalar field.

A multi-scale geometric analysis (Bermejo-Moreno & Pullin 2008) was used to
study the statistical, evolutionary geometry of the Lagrangian scalar field for both the
turbulent and the frozen velocity fields. The evolutionary breakdown of Lagrangian
blobs, from =0 to t=T,, was represented in a space of reduced geometrical
parameters representative of the shape of individual structures. As time increases,
we observed that, for the turbulent velocity field, multi-scale structures appear to
migrate from the blob-like region to the sheet-like region of that space. A few large-
scale, tube-like structures appear at later times because of the roll-up phenomenon.
Somewhat similar behaviour was qualitatively observed for the frozen field, but the
population of small-scale structures at t =7, was found to be much diminished in
comparison with the turbulent velocity field. In comparison with instantaneous passive
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scalar and enstrophy fields in turbulence studied by Bermejo-Moreno & Pullin (2008)
and Bermejo-Moreno et al. (2009), Lagrangian structures show predominantly more
sheet-like geometry in intermediate and small scales, perhaps owing to the lack of
viscous dissipation. Moreover, the geometry of Lagrangian structure from blob-like,
tube-like and sheet-like initial ¢-fields is very similar at t =T,. This could imply that
the geometry of Lagrangian structures at the later stage does not depend on initial
configurations.

A natural line of extension of this work is to the study on the geometry of
Lagrangian structures in a turbulent wall-bounded flow. This could help clarify
the mechanism of turbulent coherent near-wall structures that are still not well
understood, and which is important for drag reduction, turbulent control and
other possible applications (Robinson 1991). Recent developments on curvelets (see
Demanet & Ying 2007) allow their extension to non-periodic domains by means of
the mirror-extended curvelets with no penalty in the redundancy or computational
complexity with respect to their periodic counterparts, and can be easily included.
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Furthermore, the methodology for the geometric analysis is applicable to experimental
data sets. The multi-scale decomposition in the extraction step is based on the curvelet
transform and is currently implemented to treat domain boundaries by periodization.
The characterization and classification of educed structures (Bermejo-Moreno &
Pullin 2008) can then be immediately applied.

Another possible direction is the investigation of the evolution of vortex surfaces.
In an inviscid flow, vortex surfaces are Lagrangian structures, but little is understood
concerning their evolutionary geometry. An interesting choice of the initial Lagrangian
scalar field is to choose iso-surfaces of ¢y to be vortex surfaces in some particular
initial flow fields, e.g. Taylor—Green (Brachet et al. 1983) or Kida—Pelz initial velocity
fields (Boratav & Pelz 1994). Further research on this issue could shed light on basic
Lagrangian mechanisms of turbulence and vortex dynamics.

This work has been supported in part by the National Science Foundation under
grant DMS-0714050. D. 1. Pullin benefited from support during a visit to the Center
for Water Research at the University of Western Australia.
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